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On a zero-range interaction of a quantum particle 
with the vacuum 

D R Yafaevt 
Dtpartement de Mathtmatiques, UniversitC de Nantes, F-44072 Nantes, France, and 
DCpartement de Physique ThCorique, UnivenitC de Genhe, 24 quai Ernest-Ansemet, 
CH-1211 Genhve 4. Switzerland 

"---:..-A " ,__,._*nn. mvLc,"=" ., ,Y,J ,,,, 

Abstract. Self-adjoint extensions of the operator-A with the domain C 3 ' )  in the space 
Ck@L2(R') are described. Such operators are interpreted as Hamiltonians of a point 
interaction of a quantum particle with the vacuum. Bound states and scattering objects of 
these Hamiltonians are investigated. 

1. Introduction 

A zero-range interaction (e.g. see [1-3]) is one of the most popular solvable models 
of quantum mechanics. It is well adapted for description of a short-range interaction 
of two quantum particles or, equivalently, of a quantum particle with an external field 
at low (at least, not too high) energies. Hamiltonians H of a zero-range interaction 
are constructed in the Hilbert space L @ )  by the following explicit procedure. Suppose 
that U E L,(R3) is a smooth function outside of any neighbourhood of x = 0 and has 
the asymptotics 

u(x) - u(0)1x1-' + U('' u(JJ  E 6) (1.1) 

1 s  .x+o. The!? H = H ( a !  Is defined by the fC!rmu!a !H!~!!Z!=-(1\!1!!.5),XfO, 0: 

functions U satisfying (1.1) with coefficients u(J'  related by U ( ' ) = ~ U ( ~ ' ,  aeW. For the 
boundary condition do) = 0 the singularity of (1.1) at x = 0 disappears and we obtain 
the Hamiltonian H, = -A of a free particle. For any a E W a zero-range 'potential' is 
always negative. If a 0 the 'depth' of a zero-range well is not sufficient to bind a 
particle and such a well contains exactly one bound state with energy-a' if a<O. 
Note that the Hamiltonians H ( a )  and Ho are self-ad-joint extensions of the symmetric 
operator !? = -A defined on functions ~ ( x )  vanishing at x = 0 (so that U"' = u"'=O 
in (1.1)). All self-adjoint extensions of H are exhausted by the family H ( a )  and I f o .  

In the present paper we give a similar construction in the case where an additional 
one-dimensional (or, more generally, finite-dimensional) space is added to L2(W3). 
Thus, we consider Hamiltonians generated in the space @OL,(W') by the differential 
operator -A and some boundary condition at  x = 0. Actually, we distinguish two 
families of operators Ho= &(Ao, ao) and H = H(A,  (I, a) parametrized by real 
numbers Ao, A, a and complex numbers a,, a. Hamiltonians Ho and H are defined 
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964 D R Yafaeu 

on elements U = { &  U), where E E C  and a function u ( x )  has the asymptotics (1.1) as 
x+O. Coefficients c, U“), U(’) are related by the formulae 

(for H )  and u o )  = ag+ - au(” GoC (for H o )  = - 

where the overbar means complex conjugation. It turns out that the operators intro- 
duced by the equalities 

H,u = { A , ~ + a , u ‘ ” ,  -Au) Hu = {At+ au‘”, -Au) 
are self-adjoint in the space COL2(R3). In the case a = 0 or a, = 0 the Hamiltonians 
H and Ho are decomposed into orthogonal sums of operators in C and L2(R3). Actually, 
H(A,O,  a ) = A @ H ( r u ) ,  where H ( a )  is the operatordefinedinthe previous paragraph. 
Thus, setting a =0, we recover the Hamiltonians of zero-range interaction in the space 
L2(R3). Similarly, in the case a. = 0 we have that H,(A , ,  0) =A,@ Ho,  where Ho is the 
‘free’ Hamiltonian, 

Operators H ,  = H,(A, ,  a,) and H = H ( A ,  a, a) can serve as model Hamiltonians 
for a description of interaction of a quantum particle with an external quantized field 
at low or moderate energies. Since the number of particles in such a process is not 
conserved, the problem should be formulated in the Fock space. In themodel introduced 
above, the operators act in the space C@L2(R3) with the vacuum and one-particle 
sectors only. Thus, possible annihilation of a particle is taken into account hut creation 
of two or more particles is neglected. Such an approximation seems to be reasonable 
for low energies and, anyway, this is a price that we have to pay for solvability of the 
model suggested. Constants A,,  A correspond to interaction of the vacuum with itself, 
a, ,  a describe the point interaction of a particle with the vacuum and a is the depth 
of zero-range potential well. So by means of the boundary condition we have introduced 
non-trivial interaction of a particle with the vacuum. 

Actually, we consider the somewhat more general situation where operators H,  
and H act in the space CkOL2(R3)  with arbitrary finite k. In this case A , , A  are 
self-adjoint matrices and a,, a are vectors in Ck. In our interpretation the case k >  1 
corresponds to the degeneracy of the vacuum. Operators Ho and H are self-adjoint 
extensions in the space CkOL2(R3) of the operator fi defined by the formula ??U= 

(0, -Au} on elements U such that 5 = U“) = U(” = 0. We emphasize that the operator 
H is not densely defined hut the domains of the Hamiltonians Ho and H are dense 
in the space Ck@L2(W3) .  

This paper was inspired by the works of Yu M Shirokov [4,5], where highly singular 
potentials were considered in the framework of the theory of distributions. A correct 
mathematical interpretation to [4, 51 was given by B S Pavlov and his co-authors (e.g. 
see [6-8]). Our intention here is to find explicit formulae for all Hamiltonians of 

self-adjoint extensions of the operator ff in the space CxOL2(R’)  admits quite an 
elementary and complete solution. In fact, all such self-adjoint extensions are exhausted 
by the operators Ho= H,(A, ,  a,) and H ( A ,  a, a) introduced above. Therefore, zero- 
range Hamiltonians are described, up to some finite-dimensional term, by the same 
differential operator -A and the boundary condition at x = 0, which ‘couples’ the 
vacuum and the one-particle sectors. Furthermore, we give explicit formulae for 
quadratic forms of the Hamiltonians H, and H. This is very useful for a qualitative 
analysis of their discrete spectra. 

From a technical point of view we rely on the spherical symmetricity of the problem. 
Let us first explain this point using the example of self-adjoint extensions of H in the 

zero-range interaction: In particu!ar, we show that the prohlem of description of 
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space L2(R3). Separating the radial variable r = 1x1, we reduce the problem to the 
consideration of the family of the operators -d2/dr2+/( /+ l)r-2, where I = O ,  1,2, .  . . 
is the orbital quantum number, with the domains C?(W+) in the space L2(R+). The 
operators for I >  1 are essentially self-adjoint so that it suffices to describe self-adjoint 
extensions of the operator -d2/dr2 only. All these extensions are parametrized by the 
boundary condition u’ (0)  = au(O) ,  a E W or u(0) = 0. Returning to three-dimensional 
notation, we obtain the operators H ( a )  or Ho introduced in the first paragraph. 
Similarly, the construction of self-adjoint extensions of H in the space C’OL,(W’) 
reduces to the same problem for the operator f? = -d2/dr2 with the domain C?(W+) 
in the space Ck@Lz(W+).  

The main motivation for writing this paper was the following curious observation. 
Suppose that k = 1 and (as is physically reasonable) that a vacuum-vacuum interaction 
is zero. The operator H ( 0 ,  0, a) 2 0 for a 2 0 but, for arbitrary a # 0, the operator 
H ( 0 ,  a, a)  has a negative eigenvalue. Thus, even if a zero-range potential well is so 
shallow that it does not bind a particle, a bound state arises as an arbitrary weak 
interaction when the vacuum is switched on. On the other hand, the operator H,(O, ao) 
0 for all aOE C. This means that, in the absence of a potential well, an interaction with 
the vacuum never binds a particle. 

This paper is organized as follows. In section 2 we describe all self-adjoint extensions 
~. H and HG of ?he opera!or .e in !he spac.~ C‘@L,(W+!. The miin resn!! Is  fermc!i!ed 
as theorem 1. Its proof is given in section 3. In section 4 we give expressions for 
quadratic forms of the constructed Hamiltonians and analyse their discrete spectra. 
In section 5 ,  resolvents and scattering matrices are calculated and quantative informa- 
tion about eigenvalues is obtained. Finally, in section 6, the results of previous sections 
are reformulated in terms of the representation in the space CkOL2(R3) .  

2. The zero-range Hamiltonians 

Let X=Ck@L2(R+)  be the ‘truncated’ Fock space with only the vacuum (possibly 
degenerate) and the one-particle sectors. Thus, elements of %‘ are couples U = {& U} 
where C E  Ck: U E L2(W+). The scalar products in X and C k  are deno!ed by (., .) and 
(., .), respectively. Clearly, L2 = L2(R+) can be considered as the subspace of X if 
elements U E L, and U = {O, U) E X are identified. Hamiltonians corresponding to a 
zero-range interaction of a particle with the vacuum are introduced as self-adjoint 
extensions of the symmetric operator f? = -d2/dr2 defined on the domain 9(f?) = Cy 
(the set C r =  C?(W+) consists of functions vanishing in some neighbourhoods of zero 
and infinity). The domain 9(f?) is not, of course, dense in X. We shall c p r u c t  all 
self-adjoint (densely defined) operators H in the space X such that 9(H)c 9 ( H )  
and H u = f ? u  if u ~ 9 ( f ? ) .  

Denote by W : =  W:(R+) the Sobolev space of functions which belong to L,  with 
its two derivatives. Fot functions U E  W: the boundary values u(0) and u ‘ ( 0 )  are 
correctly defined. Let W: consist of those U E W: for which u(0) = u‘ (0)  =O. Clearly, 
the closure o f f ?  is defined on ~ i .  We are now able to formulate our main result, 

Theorem 1. Suppose that A is some self-adjoint operator in @*, vector a E C k  and 
a ER. Let 9 ( H )  c @*O W: consist of elements U = {c, U} such that 

u‘ (0)  = (8, a ) +  au(0) .  (2.1) 
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Then the operator H = H ( A ,  a, a)  defined by the formula 

is self-adjoint and I? c H. Suppose that A ,  is some self-adjoint operator in @* and 
vector a,E@*. Let 9 ( H 0 ) c C k @  W: consist of elements U such that 

d o )  = -36, d. (2.3) 

H o u = { A o ~ + u ’ ( 0 ) a o ,  -U”) (2.4) 
isself-adjoint and fi c H,. On the other hand, any self-adjoint extension of the operator 
H in the space %’ has one of these two forms. 

Hu={AC+u(O)a,  -U”) (2.2) 

Then the operator Ho= Ho(Ao, a,) defined by the formula 

We emphasize that the operators H and Ho are determined by non-diagonal 
matrices. For example, 

where U is written as a column. Nevertheless, such an operator is self-adjoint due to 
boundary condition (2.1) which ‘couples’ C k  and L2 components of U E  9 ( H ) .  

Operators H and Ho are called zero-range Hamiltonians here. Vectors a E C k  or 
aoE C k  describe a point interaction of a particle with the (degenerate) vacuum. If a = 0 
or a,=O, then the Hamiltonians H or Ho are decomposed into orthogonal sums of 
two operators acting in C k  and I&+). Operators in @* are determined, of course, by 
k x  k Hermitian matrices A or A,. The one-particle operator is -d2/dr2 with the 
boundary condition u’(O)=au(O) (for H )  or u(O)=O (for H,).  The first case corres- 
ponds to an interaction of a particle with a zero-range potential well. For the Dirichlet 
boundary condition u(0) = 0 the depth of the zero-range potential well is zero so that 
such an operator describes a free particle. 

Note that the matrices A and A ,  can be chosen to be diagonal. Let, for example, 
A = T*AT with a unitary T: C k  -f @*  and a diagonal matrix A = diag{A(J’). Set ci = Ta. 
Then Hamiltonians H parametrized by A, a, 01 and A, C, 01 are unitarily equivalent: 

H ( A , ~ , ~ ) = @ H ( A , z , G ) Q *  

W C ,  U) = {T*Z, U 1  

where @, 

(2.5) 
is a gauge transformation. Furthermore, we can take into account that the relation 
A =  T*AT holds if T is replaced by AT, where A =diag{exp(iq‘”)) and real numbers 
q(J1 are arbitrary. Thus, we can always obtain a vector i = Ta with non-negative 
components. Therefore, up to a canonical unitary equivalence, Hamiltonians H are 
parametrized by k real numbers A ( j ) ,  k non-negative numbers i ‘ j )  and a real number 
LI corresponding to a point interaction in L,(R+). In particular, in the case k = 1 the 
zero-range interaction of a particle with the vacuum is described by a complex constant 
a which, due to the gauge transformation, can be chosen non-negative. Similarly, if 
A,, = T*AoT and io = Ta,, then 

H,(A,, 0,) =@H,(A,, io)@* 
where @ is again defined by (2 .5) .  The matrix A, can, of course, be chosen to be 
diagonal and vector ci0 to have non-negative components. 
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We emphasize that if a (ao) is an eigenvector of A (A,,) then the Hamiltonian 
H ( H J  is decomposed into an orthogonal sum of an operator of the same type in the 
space C@L,(R+) and of a self-adjoint operator in e*-'. In the general case a reduction 
to the case k = 1 is not possible. 

In the space X=L,(R+) the Hamiltonian H ( u )  generated by the differential 
operator -d2/dr2 and the boundary condition u'(O)=uu(O) converges as 1011+00 to 
the free operator Ho for which u ( 0 )  = 0. More precisely, for any complex z the resolvent 
o i  H j a )  converges in the topology o f the  norm to that of H,,. It is allowed here that 
either 01 + M, i.e. the depth of the zero-range potential well tends to zero, or 01 + -00, 

i.e. the depth tends to infinity. A similar assertion holds in the space X=C*@L,(R+). 
In fact, Hamiltonian (2.3). (2.4) can be obtained as some limit of Hamiltonians (2.1), 
(2.2). This procedure requires, in particular, a vacuum renormalization. The proof of 
the following assertion will be given in section 5. 

Ploposition 1. Let 

H o = H o ( A o , a , ) , A , = A , + ~ ( ~ , a , ) a , , a , = a a o  

and 

H,  = H(&,  a,, 0 1 ) .  

Then 

lim I/( H,  - z)-' -(Ha- z)-' l l  = O  
I+.=- 

ImzZO. 

3. Proof of theorem 1 

Here we describe all symmetric (densely defined) and, in particular, self-adjoint 
extensions H of the operator Ho= -d2/dr2 with the domain 9(& = C?(R+) in the 
space %!=C*@L,(R+). In this section we denote the C *  component of U={&, U) by 
uo, i.e. we set uo = 6. We start with the following simple observation. 

rommn I -_......- 1. u"~.t."'" ...-.. ". 'L.YIIY.~IY., 
C x s n n n c e  thnt fnr crime 31 wc gP onrl slrh;trslr.i M C  Ghf f i \  

(&U, U) = (U, w ) .  (3.1) 
Then U E W: and w = -U". 

Proof: Since uo = 0 and ( H u ) ,  = 0, (3.1) implies that 

for arbitrary U E C?. It follows that U has two (distributional) derivatives and w = -U". 
U Moreover, U E W: because w E L,. 

Let us now find necessary conditions on symmetric extensions H of fi. 

Lemma 2. Let A c H c H*. Then 

9 ( H ) c C k @  W:(R+)=: 9, (3.2) 
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and there exist a linear operator L: C k  + Ck and vectors I, C k  such that 

Hu = {Luo+ u(O)I+ u’(0) [ -U”} (3.3) 

for any U = { u o ,  U } €  9 ( H ) .  

Proof: Inclusion (3.2) is an immediate consequence of lemma 1. Furthermore, according 
to lemma 1 the L, component of Hu equals - U ” .  To find ( H U ) ~  we denote by ‘p and 
0 some smooth functions on 62, with compact supports such that ‘p(0) = O’(0) = 0, 
~‘(0) = 8(0) = 1. An arbitrary function U E W: can be decomposed uniquely into a sum 

U = aQ d d E  G: (3.4) 

where rr=u‘(O), p = u ( O ) .  Therefore, every u ~ 9 ( H )  has a form U =  

{uo,u’(0)’p+u(O)O)+d with d ~ 9 ( & .  Since (Hd),=O, the C k  component of Hu 
0 

According to (3.4) the factor space X,=9,/9(& consists of vectors 
{uo,  u(O), u’ (0) )  and has dimension k + 2 .  By (3.2), 9 ( H ) = 9 ( f ? ) i X ,  where X is 
some linear subspace of X,. Let J :  {uo,  u(O), ~ ’ ( 0 ) )  c* uo be the natural projection of 
M* onto Ck. It is easy to see that a(H)= H if and only if JX =Ck.  Indeed, suppose 
that 

depends on uo, u ( 0 )  and u’(0) only. This ensures representation (3.3). 

for some /E  X and any U E 9(H). In particular, choosing U E 9(@ we find that f =  0 
so that (3.5) is equivalent to (fo, uo) = 0. Clearly,fo= 0 if and only if U ~ E  C k  is arbitrary. 
Thus, we assume below that JX = Ck. It follows that dim X = k 

Suppose now that an operator H is defined by (3.3) on a domain 9(H)  = 9(&) i X. 
Let us construct its adjoint H*. Assume that for some U, W E  H and arbitrary U E  9 ( H )  

(Hu, U )  = (U. w )  w = H*u. (3.6) 

By lemma 1, w = -U” and integrating by parts, we obtain the equality 

(( Huh,  ~ o )  - (140, w0) - U ( O ) m +  ~’(0)m = 0 (3.7) 

which is equivalent to (3.6). 

values of uo, u(0)  and u ’ ( 0 )  for U E B ( H )  are connected by the two relations 
Below, we study the cases dim X = k, k +  1, k + 2  separately. If dim X = k, then the 

u(o)=(Uo ,b )  u’ (O)=(u , ,  6)  b, g e e k .  (3.8) 

Thus, (3.3) is reduced to Hu={Buo,  -U”}, where B ( B =  L + ( . ,  b)l+(. ,  6 ) j )  is some 
linear operator in Ck. Since u , f C k  is arbitrary, (3.7) determines 

W O  = B* 00 - ~’(0) b + u ( 0 )  6. (3.9) 

The inclusion H c H* is equivalent to the relation wo= Buo for U €  9 ( H ) .  By (3.8), 
(3.9) this relation holds if and only if the operator B + ( . ,  6 ) b  is self-adjoint. Under 
this assumption the operator H is symmetric. However, if wo is defined by (3.91, then 
(3.7) and therefore (3.6) are fulfilled for arbitrary U E  9,. Thus, 9(H*)= 9, SO that 
H is not self-adjoint. 
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Further, let d i m X = k + l .  Then uo,  u ( 0 )  and u’(0) are related by one of the 
conditions (2.1) or (2.3) where f =  U,; a and a, are some vectors of @*, and a EC. In 
case (2.1) we can rewrite (3.3) in the form 

Hu = {Au,+ u(O)m, -U”} 

A =  L+(., a ) j : C k + C h  m=l+ru f E  C* 

and (?:7) in the form 
-- 

(u0,A*uo- w,+u(O)a)+u(O)((m, u ~ ) + a ~ ( O ) - u ‘ ( O ) )  = O .  

Since u 0 € C h  and u(0) are arbitrary, this is equivalent to the two relations 

w,=A*u,,+ u(0)a ~ ‘ ( 0 )  = ( U,, m ) +  Uo(0). (3.10) 

Thus, (3.6) is fulfilled for arbitrary U E  9 ( H )  and w = Hu if and only if 

A = A *  a = m  a = U. 

Under this assumption H coincides with operator (2.1). (2.2), i.e. H = H, and H c H*. 
On the other hand, if (3.6) holds for some U then, according to (3.10), u ~ 9 ( H )  so 
that H is self-adjoint. 

Similarly, in case (2.3) we rewrite (3.3) in the form 

Hu={A,u,+u‘(O)m,,  -U”) 

A ,  = L -  (., ao)l: C k  + C k  m , = i e C *  

and (3.7) in the form 

(U,, Atu,  - WO+ o’(O)a,)+ u‘(O)(( m,, uo)+m) = 0. 

Since u,eCk and u’ (0 )  are arbitrary, this is equivalent to the two relations 

wo= A,*uo+ u’(O)a, 

0) = - (no, mo). 

’.” A . =  , A* .” 
Therefore, (3.6) is fulfilled for arbitrary ~ e 9 ( H )  if and only if 

no = ,mil, 

Under this assumption H coincides with operator (2.3), (2.4), i.e. H = Ho, and H c H*. 
On the other hand, if (3.6) holds for some U then, according to (3.11), U E ~ ( H )  so 
that H is self-adjoint. 

Finally,ifdimX= k+Z,thenX=X,andthevaIuesofu,,  u(O), u ’ ( O ) f o r u ~ 9 ( H )  
are arbitrary. According to (3.3), (3.7) u ( O ) = ( u , ,  f), u ‘ ( O ) = ( u , ,  I )  so that uf?9(H) 
and H is not symmetric. This concludes the proof of theorem 1. 

(3.11) 

4. Quadratic forms and bound states 

Let y [ , ,  , J be a closed positively definite quadratic form with domain 9 [ y ]  in some 
Hilbert space Zj m= H. By definition, a self-adjoint operator Y corresponds to 
~ [ . , . ] i f ~ ( Y ) c 9 [ y ] a n d ( Y f ; g ) = y [ f ; g l f o r e v e r y f ~ ~ ( Y ) a n d g ~ 9 [ y ] .  Itfollows 
that 9( Y) is dense in 9 [ y ]  in the metrics of y [ . ,  .I. The lower bounds of y and Y are 
the same, It can be shown (e.g. see [9]) that there is one-to-one correspondence between 
positively definite self-adjoint operators and closed quadratic forms. In particular, 



970 D R Yafaev 

given an operator Y the form y is constructed as y [ f ;  g] = (Y’/% Y1/*g) on domain 
9[y]=9(Y”’) .  The case of semibounded (from below) operators can always be 
reduced.to the positively definite one by shift by some constant. Quadratic form is a 
convenient tool for the study of the discrete spectrum. Indeed, for any A E W the total 
multiplicity of the spectrum of an operator Y in the internal (-m, A )  equals the maximal 
dimension of such linear sets At 9[y ]  that y[f,f]<Allf112 for everyfEA,f#O. 

Now, let the operator H be defined by (2.1), (2.2). Integrating by parts we find 
that for U = {e, U )  E 9(H)  

h[u, u]=(A[,t)+2Re([, a ) ~ + u ~ u ( 0 ) ~ 2 + ~ ~ m l u ’ ( r ) 1 2 d r .  (4.1) 

The domain 9 [ h ]  is defined as the closure of 9 ( H )  in the metrics 

h[u, u ] + c ~ [ ~ ~ + c  jomlu(r)j’dr (4.2) 

for sufficiently large c>O.  Let W:= W:(W+) be the Sobolev space of functions which 
belong to L, with their first derivatives. Note that for U E W :  the boundary value u ( 0 )  
is well defined and ~ ~ ( 0 ) ~ ~ C ~ ~ u ~ ~ ~ ;  but u’ (0)  is not, of course, bounded by IIuIIw;. 
Therefore, the metrics, (4.2), is equivalent to I#+  ~ ~ u ~ ~ ~ ;  and the boundary condition 
(2.1) disappears by closure of 9 ( H ) .  It follows that 9 [ h ]  = C k O  W: and representation 
(4.1) holds for all U E  9 [ h ] .  

Similarly, we obtain the expression 
m 

ho[u, u l = ( A o t , f ) + l  0 b‘(r)12dr (4.3) 

for the quadratic form of the operator Ho defined by (2.3), (2.4). The domain 9 [ h o l  
equals the subset of those UEC’O W: for which boundary condition (2.3) holds. 

The spectra of the operators H and Ho consist of the positive continuous parts 
(this is discussed in section 5 )  and, possibly, of some numbers of negative eigenvalues. 
Here we shall show that these numbers equal the numbers of negative eigenvalues of 
some finite-dimensional matrices. Let us introduce an auxiliary operator A in the space 
Ck-’ by the formula 

A 6 = { A 5 + 5 ’ a , ( t , 4 + 4 ‘ )  6 = {6> 5‘) 

where [EC’,[’EC. 

Theorem 2. The total number of negative eigenvalues (counted with their multiplicity) 
of the operator H ( H , )  equals the total number of negative eigenvalues of the operator 
A(Ao) in the space C k + ’ ( C k ) .  

Proof: According to (4.1) 
m 

h[u? U ]  = ( A t .  t ) c * * l +  r Iu’(r)!’dr t={t ,U 5‘= u(0). (4.4) 
J o  

Let us denote by M and m the subspaces in 9 [ h ]  and e’+’ spanned by eigenvectors 
corresponding to negative eigenvalues of the operators H and A, respectively. Then 
N = dim M and n =dim m are total numbers of eigenvalues of the operators H and A. 
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First we show that N s n. Let an operator Q :  a[h] + C*+’ be defined by the relation 
Q(5, U (  ‘ ) I  = IS, 140)) and let G = QM be the image of M under this transformation. 
According to the relation 

m 

(A,t , t )c i*1+[  Iu’(r)l’dr<O U E M  U # O  (4.5) 
0 

the equality Q u  = 0 for U E M is possible only if U,= 0. It follows that dim fi =dim M. 
Since, again by (4.5), (At ,  &‘.+I < O  for every 6~ M, 5 # 0 we have that n 3 dim 6 = N. 

For the proof of the inequality N > n we take into account that there exists y > 0 
such that 

(A& & k + ~ ~ - ~ l t l ~ ~ + l  (4.6) 

for every t={,$, #‘}E m. Denote u,(r )  =([, [ ‘ O ( E r ) }  where O is some smooth function 
with compact support and O(0) = 1. The set M. of such U. is linear and dim M, =dim 
m. According to (4.4), (4.6) 

m 

N u . ,  u s l s  -~(151~+15’1~)+ EIC~’ [, lO’(r)p dr<O t # O  

for sufficiently small E.  This shows that N 3 n. 
Considering the operator Ho,  we shall use a similar notation but add the subscript 

‘0’ to distinguish objects related to the operators Ho and A,. Let Qo: 9 [ h , ] + C k  be 
defined by Qo(& U} = 5 and let Go= QoM,. It follows from (4.3) that the equality 
Qou = 0 for U E MO is possible only if U = 0 and that (A&, 5) < 0 for all [ E  Go, 5 # 0. 
Therefore, 

no> dim Go = dim MO= No,  

Conversely, for every .$Em, we define u*(r) ={c, -(c, a,)O(Er)}. Such functions satisfy 
boundary condition (2.3) for any E > O  and, by (4.3), 

ho[u,, uel=(Ao5, 5)+E1(5,ao)~2[om~~’(r)12dr. 

This quantity is negative for sufficiently small E > O  and g#O since (A&, 6)s -y15I2, 
y >  0, fclr a!! 5 E  mo: 0 

Corollary 1. The total numbers of negative eigenvalues of the operators H and Ho do 
not exceed k+ 1 and k, respectively. 

The results on the operator H are formulated in terms of the auxiliary operator A. 
However, some information is available in terms of the operator A only. 

Corollary 2. Suppose that the operator A in C x  has a negative eigenvalue. Then for 
arbitrary a E @* and a E C the operator H has a negative eigenvalue. Moreover, the 
same conclusion is valid if A has a zero eigenvalue but a is not orthogonal to the 
corresponding eigenspace of A. 

ProoJ: According to theorem 2 it suffices to show that 

( A t ,  t)ck+’=(A5, 5)+2 W a ,  5)C+a1#‘1*<0 

( A t ,  =Ald2-42-a&)l(a, 5)l’. 
forsome .$=((, .$)E@~“. Let A(=A&ASO,C#O,andset .$‘=-e(Z,a).Then 
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The right-hand side here is negative for sufficiently small E > 0 if either A < 0 or A = 0 
0 

Below, until the end of this section, we suppose that k = 1 so that the vacuum is 
unique. In this case A is a real and a is a complex constant. By corollary 2, the operator 
H has a non-trivial negative spectrum for arbitrary ASO, a and a. Furthermore, 
according to theorem 2 the number of negative eigenvalues of H is determined by the 
2 x 2 matrix 

but (a, 5) # 0. 

Finding its eigenvalues we obtain the following result 

m ........ 9 r .̂ I . - .  TL^ ---- -.-.. U L^_ .___^ --..-.:..- ' C  ^^A ~ -1.. :c inevrem 2. LCL n =  I .  i iic upciarui n 1x65 L W U  ucgrrrvc cigr;irvriuc> ii aim uiuy I I  

A + a  < O  and 1a(2<Aa. It has one negative eigenvalue if and only if la12>Aa or 
la(2=Aa and A+a<O. The relation H p 0  is equivalent to the two inequalities 
A+aaO and laI2CAa. 

Physically it is reasonable to assume that there is no interaction of the vacuum 
with itself. This is the case if A = 0. For an arbitrary A the problem can be reduced 
by shift to that without vacuum-vacuum interaction if the operator -d2/dr2 is replaced 
by -d2/dr2-A. This procedure makes sense if A<O so that -d2/dr2-A>0. The 
operator H for A =0, a = O  has the zero eigenvalue at the bottom of the continuous 
spectrum. Besides, it does not have negative eigenvalues if a P 0. Corollary 2 or theorem 
3 show that the zero eigenvalue transforms into an isolated negative eigenvalue as an 
interaction of a particle with the vacuum is switched on. In the case A<O the operator 
H for a = 0 has a negative eigenvalue. This eigenvalue cannot be absorbed into the 
continuous spectrum due to an interaction of a particle with the vacuum. 

The results on the operator Ho are formulated even more simply. Actually, according 
to theorem 2, Ho has a negative eigenvalue if and only if A,<O. Recall that the 
Hamiltonian Ho corresponds to the case where there is no potential zero-range interac- 
tion. Thus, if A o r O  an interaction of a particle with the vacuum never binds this 
particle. On the other hand, the bound state existing for A,<O and ao=O never 
disappears as an interaction with the vacuum is switched on. 

5. The resolvent and the scattering matrix 

T- I 4 11.- -..--a..-..* -F  +La --.,-"t-- U ..,- m . . C ~  rrrl.m ehn nietnm -f ans,ntinnc 
,U CULlJ l lUC,  Lllci lL iJUl lC l l l  U1 L L l C  "YLLLLLU1 1 .  nr I B I U O L  1 Y I . l  L. . l  =,ob.... "1 ".l"I..U..' 

At+  u(0 )a  - z.$ = q Im z # O  5, (5.1) 

- - zu = f u , f  E L2 (5 .2 )  

with boundary condition (2.1). The solution of (5.2) is given by the formula 

u(r)= y e~p( iz"~r)+i (2~ ' / ' ) - '  exp(iz'/2/r-r'l)f(r') dr '  Im z"*> 0 (5.3) 

so that 

u(0 )  = y +  i J  ~ ' ( 0 )  = z"2(iy+J) (5.4) 
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where 

J = J ( Z ) = ( ~ Z ” ~ ) - ’  exp(iz’/2r)f(r) dr. ( 5 . 5 )  1: 
Applying the resolvent RA(z) = ( A - z ) - l  to (5.1) and replacing u ( 0 )  by its expression 
(5.4) we find that 

.$=KA(z)q -(y+iJjR,(zja (5.6) 

and hence 

(5, ~ ) + ( R A ( z ) ~ ,  a)? =(R,(z)q, a)-i(R,(z)a, a)I. 

(6, a)+ (a -iz’l2) y =  ( z ’ l2 -  i a ) I  

y =  D-’ ( z ) [ (RA(z )q ,  a )+( i a  -z’’’+i(RA(z)a, a))J] 

(5.7) 

Substituting (5.4) into boundary condition (2.1) we obtain that 

(5.8) 

Now, subtracting (5 .8 )  from (5.7) we find 

(5.9) 

where 

D ( z )  =(R,(r)a, a)+iz’/2-a. (5.10) 

Thus, according to (5.3), (5.6) we have obtained expressions for U and 5. 
Let us rewrite these expressions in matrix notation. It is convenient to introduce 

the resolvent %,,(z) of the free operator -d2/dr2 with the boundary condition u ( 0 )  = O  
in the space L2(R+). Clearly (cf. (5.3)), Bo(z) is an integral operator with kemel 

i(2~”’)~’{exp(iz’/~Jr - r’l) - e~p[ i z ’ /~ (  r + r’)]} .  

Define operators r ( z ) = r A , . ( z ) : C k + L 2  and f ( z ) = F , , ( z ) :  L2+Ck by the formulae 

(5.11) 
i ‘A, , (z) f=RA(z)a I -exp(iz”2r)f(r) d r  

J O  

and let K ( z )  he an integral operator with kernel exp(iz’’2(r+r’)). Then, (5.3), (5.6) 
and (5.9) show that 

(5.12) 

Similarly, in the case of operator (2.3), (2.4) the solution of the equation (Ha - z)u = 
/ ; i 1 = { 5 , u } , f = { q , f } ,  is given by (5.3) and 

5 = R4( z) q - z’l2(i y + J)R4(z)ao 

where I is defined by ( 5 . 5 ) ,  

Y = D;’(z)[(z’/’(R4b(z)a0, ao)-i)J -(Rh(Z)v, ad1 

and 

(5.13) 
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It follows that the resolvent R,(z) = (Ho-z)-‘  has the following representation: 

- -  
with To =TA,,.,, To = TA,,.,. Thus, we have obtained the following result. 

meorem 4. The resolvents of the operators H and Ho are given by (5.12) and (5.14). 
respectively. 

Let us now prove proposition 1. If A=A, = AO+m(., ao)ao, then 

R A ( ~ )  ‘I = R&(Z) ?I - a(R&(z  )’I, no)( 1 + a(R&(z )  00,  no)) - ’R&(~)  no 

In particular, for a = a, = ano 

RA(z)a  = a ( l  +a(R+,(z)a,,, aO))~lR4(z)a0.  

It follows that 

R ~ ( z ) a  + R&(z)ao/(R4(z)ao,  00) 

and 

D ( Z )  =iz’/*-m(l C ~ ( R ~ ( Z ) ~ , , ,  ao))-’+ - D , ( z ) / ( R ~ ( z ) ~ ~ ,  0,) 

as m+m. Therefore, comparing (5.12) with (5.14) and taking into account (5.13) we 
arrive at (i.6j. 

The resolvents of the operators H and Ho are analytic functions on the two-sheet 
Riemannian surface of the function z”*. Poles of R ( z )  and Ro(z)  lying on the first 
sheet (where Im ~ ‘ ’ ~ 8  0) are real and coincide with eigenvalues of H and HO, respec- 
tively. Poles on the second sheet (where Im z112 < 0) are naturally interpreted as 
resonances of H or Ho.  

Indeed, applying (5.121, or by a direct solution of the equation Hu = zu, we obtain the 
following results. Suppose first that z <O is not an eigenvalue of the operator A. Then 
z is an eigenvalue of the operator H if and only if D ( z )  = 0. This eigenvalue is simple 
and the corresponding eigenvector is 

U = y[-RA(z)a,  exp(iz1’2r)} V € C .  (5.15) 

Suppose now that z is an eigenvalue of A, and denote by Nz(A)  the corresponding 
eigenspace. Then, for every C E N , ( A )  such that (5, a ) = O  the element u = { & O }  is an 
eigenvector of H. In particular, a degenerate eigenvalue of A is also an eigenvalue of 
H. Furthermore, if the vector a is orthogonal to Nz(A),  z < 0, then H has an eigenvector 
of the form (5.15) if and only if D(z)=O. Here R A ( z )  in (5.10) and (5.15) should he 
rep!a~ed hy regular par! a! the point z  le^ the part containing the pole should he 
omitted). The results for the operator Ho are formulated quite similarly. In particular, 
if z does not belong to the spectrum of A. then z is an eigenvalue of Ho if and only 
if Do(z)  = 0. The corresponding eigenvector is 

gigeiiva;ues of ;he opeiaioi ‘q are &;eim,ified by teroj of ihe fuiic.i0n 

U = y[-iz”2R4(z)ao, exp(iz’”r)}. 
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In the case k = 1 the equation O,(z )  = 0 is quadratic with respect to s = -iz'12 and 
can be solved explicitly. Indeed, it has the roots 

2 ~ * = - l a , l i ( l a , l ~ - 4 A ~ ) " ~ .  

Roots s lying on the positive half-axis correspond to eigenvalues z = -s2 of H and 
roots s in the left half-plane correspond to its resonances z = -s2. Let us analyse the 
dependence of s, on the coupling constant a, of the interaction of a particle with the 
vacuum. Note that for a,=O the operator H o =  H,(A,, 0) bas the eigenvalue A, (the 
corresponding function Do(z)  has poles on both sheets of the Riemannian surface of 
the function z1I2). If Ao=O, the zero eigenvalue of H,(A,, 0 )  is split up for a, # 0 into 
the negative eigenvalue -laOl2 and the zero-energy resonance at the bottom of the 
continuous spectrum. If A,<O, the negative eigenvalue A, transforms for a,# 0 into 
the negative eigenvalue A = -s: and the resonance at the point -s?. Finally, in the 
case A,> 0, the positive eigenvalue A, creates two resonances -s: which are complex 
and mutually conjugated if /a,lz < 4Ao and are negative if \sol* 4A,. 

The equation D( z )  = 0 is cubic (for k = 1) with respect to  z112 and also allows one 
to study the behaviour of eigenvalues and resonances of the operator H with respect 
to parameters A, a and a. In terms of s = -iz'I2 this equation reads 

(5.16) 

We describe only the dependence of eigenvalues of H = HCA, a, a) as a + O  for fixed 
A and a. Let first A=O. Then, by (5.16) the operator H has exactly one negative 
eigenvalue A for small a (this is also a consequence of theorem 3) and A - -Ial4I3 for 
a = 0 , A - - a ~ ' ~ a ) 2 f o r ~ > 0 a n d A - - a 2 + 2 a - ' ~ a ~ 2 f o r a < 0 .  I fA>O,then H hasa  
negative eigenvalue A only for a < 0. In this case 

A = -a2+2a(A+a')-'la12. (5.17) 

(s2+A)(s+ U )  - la/z = 0. 

Finally, if A < 0, then H has only one eigenvalue 

A - A - ( I A ~ ' / ~ + ~ ) - ' ~ u ~ ~  (5.18) 

for a P O  and two eigenvalues A , ,  A 2  for a < 0. If IAlZ a2, then one of them has the 
asymptotics (5.17), and another the asymptotics (5.18). If IA/ = a', then 

A,,z - A -(2)nl)1121~l. 

The explicit representations for the resolvents allow one to construct the spectral 
family of the operators H and H,, the expansions in eigenfunctions and so forth. 
Since, however, this is quite similar to the same procedures for the standard zero-range 
interaction (without the interaction with the vacuum), we will not dwell upon it. 

Let us calculate only the scattering matrix for the Hamiltonians H and H,. Note 
previously that ail basic objects of the scattering theory are weii detined In our case. 
We can choose for an unperturbed operator H ' O '  the operator H,(A,,O) for any Ao. 
Since the absolutely continuous part of H,(A,, 0) does not depend on A, any choice 
is possible. For instance, we can set A,, = 0. The wave operators for the pair H'O', H 
exist, are complete and the scattering matrix .S(A): C+C, A > O  is defined by the 
following standard procedure. One looks for the solution of the equations 

A(+ u(0)a = A t  - u " = A u  

satisfying boundary condition (2.1) and having the form 

u ( r )  = exp(-iA112r) - S(A) exp(iA1'2r). 
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Similarly to the solution of (5.1), (5.2) we find that 

S(A) = D(A-iO)D-'(A+iO) D(A-iO)=D(A+iO) (5.19) 

if A u ( A )  or A E u ( A )  but a is orthogonal to NA(A) .  Just in the same way we find 
that the scattering matrix SO(A) for the pair H'O', Ho is 

&(A)  = DO(A -iO)D;'(A + io) Do(.\ -io) =-, (5.20) 
_ P  L A _ I  A \  -- L - - I "  \ L... 
i t  n r v UL n c V I ' L ~ ,  UUL iio is oiihogoiiai io XA(A0).  if A E u ( A j ( i  E u(AOjj and 
n(a,) has a non-trivial projection onto NA(A)(NA(A,,)), then S ( f i ) + l ( S , , ( p ) +  1) as 
p + A  (from both sides). Thus, the functions S(A) and &(A)  are continuous in A > O .  
Furthermore, S(A) + -1  and &(A)  + 1 as A + m. Recall that for a zero-range potential 
well (without an interaction with the vacuum) the scattering matrix tends to -1 as 
A+m. The fact that S,,(h)+ 1 as A +m is not surprising because for the Hamiltonian 
HO the zero-range potential well equals zero. 

6. The three-dimensional representation 

As was noted in the introduction, the study of an interaction of a three-dimensional 
particle with a zero-range potential well and the vacuum can be reduced to that for a 
particle on the half-axis. Actually, let %'=CX@L2(R3) now, so that elements of 7t are 
couples U = {#, U}, [ E  Ck, U E L2(R3). Hamiltonians are introduced as self-adjoint 
extensions of the symmetric operator = -A defined on the domain of elements 
U = {O, U}, U E CF(R3\{O}). Let us introduce spherical coordinates r = 1x1, o = xlx1-l in 
Iw' and set 

m 

u ( x ) =  1 r - Iu , ( r )x(o)  
1=0 

where Y,  is the spherical function. Since 
m 

( H u ) ( x )  = 1 r - ' [ - u ~ ( r ) + ~ ( ~ + l ) r ~ ~ u ~ ( r ) ~ ~ , ( w )  
I=0 

the operator H in the space L2(R3) is unitarily equivalent to the orthogonal sum of 
the operators 

fi, = -d2/dr2+1(1+ l)r-' I = O ,  1,2,. . . 
acting in the space L2(R+) and defined on Cy(R+). The operators kt for I 1 are 
essentially self-adjoint. Therefore, the problem is reduced to construction of self-adjoint 
extensions of the operator HO in the space Ck@L2(R+) .  

This problem was considered in theorem 1. Now we need only to rewrite its results 
in terms of the space @'@L,(R'). In this representation the role of the set D, =ek@ 
W:(R+) is played by 

a, = C k @  Iq(R3) 
___L____ r i r 2 l n 3 ,  :. _ I - c _ _ A  c-18 A r .:-- 6,2,m3\ :F .. L A  ---- .- --"- ~ 

WIIW m2{m I> UL-LIIIW as IUIIUW~. J U I ~ L L ~ U I ~  u c  V V ~ I M  I 11 U Y W U ~  LY L ~ I C  =YPCC 

W:(R3) outside any neighbourhood of the point x=O and it admits as x+O the 
representation 

u ( x ) =  u'O'lx"'+u'"+u(x) 
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where U E W:(W') and u(0) =O. Let the operator -A be defined on @@') in the sense 
of distributions with the set of test functions being C?(R'\{O}). The following assertion 
is a direct reformulation of theorem 1. 

Theorem 5. Suppose that A, A,, a, a,  and a are !he same as in theorem 1. Let 
9( H) c 9, consist of elements U = [c, U} such that 

U"'=((, a)+au'O'. 

Then the operator H defined by the formula 

H ~ = { A c + u ' ~ ' a , - A u }  

is self-adjoint and fi c H. Let 9( H,,) c 9* consist of elements U such that 

U('' = -((, a,). 

Then the operator H,, defined by the formula 

H,u = { A , ( +  u"'a,, -Au} 

is self-adjoint and fi c H,. On the other hand, any self-adjoint extension of the operator 
fi in the space X has one of these two forms. 

._...-..~-..."...---...I A l l  remarks mid* in wetion --.. 7 - -re -.- relevant fnr "- oper~!ars .H, and .H cxr?si&r~d_ in  
the space Ck0L,(R') .  In particular, proposition 1 also holds in this representation. 

and (5.14). Now B o ( z )  and K ( z )  are the integral operators with kernels 
The resolvents R ( z )  and R,(z) of the operators H and Ho are again given by (5.12) 

(4w)-'lx -x'I-' exp(izl'21x -x'l) 

and 

(4w)- ' ( Ix l  lx'l)-' exp(iz1/2(lxl+ Ix'l) 

respectively. The functions D ( z )  and I -  Do(z)  are, as before, defined by (5.10) and (5.13) 
andT=TA,. ,T=rA,. ,r0=Taa,4,To=rAo.ql .  Accordingto(5.11),theoperatorsrA..(z): 
C k +  L2(R3) and f A , a ( z ) :  L2(W') + C k  are determined by the equalities 

- -  

( I ' A , o ( z ) v ) ( x )  = 2 - ' ~ - ' / ~ ( R , , ( z ) 7 7 ,  a)lxl-' exp(iz'/21xl) 

fA,.(z)f = 2-'?i-' / 'RA(z)a 1xl-l exp(iz"21xl)f(x) d r  lR3 
Finally, we note that (5.19), (5.20) give the following expressions for the scattering 

amplitudes. They do not depend on angular variables and are 

F ( h ) =  - ( i A 1 / 2 - a + ( R A ( A ) a ,  a ) ) - '  A E  44, 
for the Hamiltonian H and 

F,(A)=(R&(A)a, ,  a ~ ) ( l - i A ' ' 2 ( R ~ , ( A ) a ~ ,  a d - '  A E 4 A o )  

for the Hamiltonian Ho.  
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